login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338850
Continued fraction expansion of the smallest constant 'c' such that the numbers 1+floor(c^(n^1.5)) are distinct primes for all n >= 0.
5
2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 13, 6, 1, 3, 5, 1, 5, 1, 7, 17, 1, 3, 1, 11, 18, 3, 1, 2, 1, 2, 1, 2, 17, 15, 1, 69, 3, 1, 2, 1, 1, 1, 1, 33, 1, 3, 2, 4, 17, 1, 3, 2, 2, 1, 2, 6, 1, 11, 3, 2, 1, 1, 1, 17, 1, 7, 5, 2, 2, 2, 84, 1, 8, 3, 1, 1, 22, 3698, 2, 2, 1, 1, 2, 1, 7, 2, 1, 1, 1, 1, 3, 1, 5, 15, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 16, 1, 7, 2, 2, 3, 1, 9
OFFSET
1,1
EXAMPLE
2+1/(3+1/(1+1/(2+1/(1+1/(2+1/(1+1/(1+1/(1+1/(1+1/(3+1/(1+1/(2+1/(13+1/(6]= 590652/260429 = 2.26799626769... The constant 'c' is equal to 2.267996267706724247328553280725371774527042254400818772275…
PROG
(PARI)
c(n=40, prec=100)={
my(curprec=default(realprecision));
default(realprecision, max(prec, curprec));
my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
for(j=1, n-1,
b=1+floor(c^(j^d));
until(ok,
ok=1;
p=smpr(b);
listput(a, p, j+1);
if(p!=b,
c=(p-1)^(j^(-d));
for(k=1, j-2,
b=1+floor(c^(k^d));
if(b!=a[k+1],
ok=0;
j=k;
break;
);
);
);
);
);
default(realprecision, curprec);
return(c);
};
contfrac(c(50, 200), 115)
\\ François Marques, Nov 17 2020
CROSSREFS
Sequence in context: A127246 A106038 A078711 * A322423 A325494 A295561
KEYWORD
nonn,cofr
AUTHOR
Bernard Montaron, Nov 12 2020
STATUS
approved