The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078711 Sequence is S(infinity), where S(1)={1,2,3}, S(n+1)=S(n)S'(n) and S'(n) is obtained from S(n) by changing last term using the cyclic permutation 1->2->3->1. 3
 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paolo Xausa, Table of n, a(n) for n = 1..12288 FORMULA Lim_{n->infinity} Sum_{i=1..n} a(i)/n = 37/21; density of 1's is 3/7; density of 2's is 8/21; density of 3's is 4/21. EXAMPLE Concatenating 1,2,3 gives 1,2,3,1,2,3; changing the last term 3 to 1 gives the first 6 terms: 1,2,3,1,2,1. Concatenating those 6 terms: 1,2,3,1,2,1,1,2,3,1,2,1; replacing the last term 1 with 3 gives the first 12 terms: 1,2,3,1,2,1,1,2,3,1,2,2. MATHEMATICA A078711list[i_]:=Nest[Join[#, Most[#], {Mod[Last[#], 3]+1}]&, Range[3], i]; A078711list[6] (* Each iteration doubles the number of terms *) (* Paolo Xausa, Aug 31 2023 *) CROSSREFS Cf. A010060, A078978, A078979. Sequence in context: A091654 A127246 A106038 * A338850 A322423 A325494 Adjacent sequences: A078708 A078709 A078710 * A078712 A078713 A078714 KEYWORD nonn AUTHOR Benoit Cloitre, Dec 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 11:45 EDT 2024. Contains 374472 sequences. (Running on oeis4.)