login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078712
Series expansion of (-3 - 2*x)/(1 + x - x^3) in powers of x.
5
-3, 1, -1, -2, 3, -4, 2, 1, -5, 7, -6, 1, 6, -12, 13, -7, -5, 18, -25, 20, -2, -23, 43, -45, 22, 21, -66, 88, -67, 1, 87, -154, 155, -68, -86, 241, -309, 223, 18, -327, 550, -532, 205, 345, -877, 1082, -737, -140, 1222, -1959, 1819, -597, -1362
OFFSET
0,1
COMMENTS
This sequence is -A001608(-n), the Perrin sequence for negative n. - T. D. Noe, Oct 10 2006
Similar to the Perrin sequence A001608, I conjecture that if p is a prime then a(p) == 1 (mod p). This implies that A001945(n) == 1 (mod p) and A001608(2*n) == 2 (mod p). - Michael Somos, Dec 25 2022
LINKS
Robert Dougherty-Bliss, The Meta-C-finite Ansatz, arXiv:2206.14852 [math.CO], 2022. See page 7.
Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See pp. 56, 58.
Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.
FORMULA
a(n) = a(n-3) - a(n-1) with a(0)=-3, a(1)=1, a(2)=-1.
a(n) = A001945(n) - A001608(n).
a(n) ~ 2*real(r^n) with r = 0.87743... + 0.7448617...*i one inverse complex root of x^3 - x - 1 = 0 (A210462, A210463).
2*a(n) = A001608(2*n) - A001608(n)^2 follows from the Binet formula for a(n) = -p^(-n) - r^(-n) - s^(-n), where p, r, s are roots of the Perrin polynomial x^3 - x - 1. - Roman Witula, Jan 31 2013
G.f.: (2*x + 3)/(x^3 - x - 1). - Vincenzo Librandi, May 17 2013
EXAMPLE
G.f. = -3 + x - x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 2*x^6 + x^7 - 5*x^8 + 7*x^9 + ...
MATHEMATICA
CoefficientList[Series[(2x + 3)/(x^3 - x - 1), {x, 0, 60}], x] (* Harvey P. Dale, Mar 18 2012 *)
LinearRecurrence[{-1, 0, 1}, {-3, 1, -1}, 60] (* Harvey P. Dale, Mar 18 2012 *)
a[n_] := If[n < 0, SeriesCoefficient[(-3 + x^2)/(1 - x^2 - x^3), {x, 0, -n}], SeriesCoefficient[(-3 - 2 x)/(1 + x - x^3), {x, 0, n}]]; (* Michael Somos, Oct 15 2017 *)
Table[RootSum[-1 - # + #^3 &, #^(-n) &], {n, 0, 20}] (* Eric W. Weisstein, Jun 27 2018 *)
RootSum[-1 - # + #^3 &, #^-Range[0, 20] &] (* Eric W. Weisstein, Jun 27 2018 *)
PROG
(PARI) Vec((2*x+3)/(x^3-x-1)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) {a(n) = if( n<0, polcoeff( (-3 + x^2) / (1 - x^2 - x^3) + x * O(x^-n), -n), polcoeff( (-3 - 2*x) / (1 + x - x^3) + x * O(x^n), n))}; /* Michael Somos, Oct 15 2017 */
(Magma) I:=[-3, 1, -1]; [n le 3 select I[n] else -Self(n-1)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, May 17 2013
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ralf Stephan, Dec 19 2002
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved