login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078714
a(n) = smallest number m which can be obtained in n ways by subtracting twice a triangular number from a perfect square.
3
1, 4, 16, 34, 142, 79, 1276, 289, 394, 709, 103336, 1024, 930022, 6379, 3544, 2599, 75331762, 5119, 677985856, 9214, 31894, 516679, 54916854316, 12994, 88594, 4650109, 30319, 82924, 40034386796182, 46069, 360309481165636, 33784, 2583394, 376658809, 797344
OFFSET
1,2
COMMENTS
The minimum number m (denoted by LSDT(n)) which can be represented in n different ways as a symmetric unimodal consecutive integer sequence (e.g., 6+7+8+7+6) that sums to the integer m. More precisely, n is the number of ways to arrange m objects into symmetrically-placed, congruent isosceles trapezoids adjoined at overlapping largest bases and m is the minimum number of objects that allows this number of arrangements.
a(23)-a(50) are ?, 12994, 88594, 4650109, 30319, 82924, ?, 46069, ?, 33784, 2583394, 376658809, 797344, 78829, ?, ?, 23250544, 148129, ?, 414619, ?, 6716824, 272869, ?, ?, 168919, 19933594, 1151719. - Robert G. Wilson v, Dec 24 2002
LINKS
Ray Chandler, Table of n, a(n) for n = 1..2098 (a(2099) exceeds 1000 digits).
T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6.
FORMULA
LSDT(k)={min n: SDT(n)=k}, where SDT(n)=((r1+1)*(r2+1)*...)/2 and ((p1^r1)*(p2^r2)*...) is the factorization of 4n-1 into (odd) primes.
a(n) = (A204086(n) + 1)/4. - Ray Chandler, Jan 10 2012
For odd prime p, a(p) = (3^(p-1)*7 + 1)/4.
EXAMPLE
Let SDT(n) = the number, k, of symmetric double trapezoidal arrangements of n objects, then SDT(34) = 4, since we have 34 or 11+12+11 or 6+7+8+7+6 or 2+3+4+5+6+5+4+3+2. For SDT(n) = 4, we have n = 34 or 49 or 58 or 64 ..., so that the least value of SDT(n)=4 is LSDT(4) = 34. Also 4*34 - 1 = 135 = (3^3)*(5^1) so that r1=3 and r2=1 (p1=3 and p2=5), resulting in SDT(34) = (3+1)*(1+1)/2 = 4 and 34 is the least value of n which satisfies 4*n-1 so that one half the number of odd divisors equals 4.
MATHEMATICA
The following function determines the number of ways, SDT(n), of arranging n identical objects into symmetric double trapezoidal arrangements: SDT[n_] := (Times @@ Cases[FactorInteger[4 n - 1], {p_, r_} -> r + 1])/2 The program below computes the first few terms of the sequence LSDT(k)=min{n:SDT(n)=k}. The output is in the form {{1, LSDT(1)}, {2, LSDT(2)}, {3, LSDT(3)}, ...}: Union[Sort[{SDT[ # ], #} & /@ Range[1, 100000]], SameTest -> (#1[[1]] == #2[[1]] &)]
CROSSREFS
KEYWORD
nonn
AUTHOR
R. L. Coffman, K. W. McLaughlin and R. J. Dawson (robert.l.coffman(AT)uwrf.edu), Dec 19 2002
EXTENSIONS
Missing terms noted in Comments and b-file from Ray Chandler, Jan 10 2012
STATUS
approved