login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292208
Composite numbers k such that sigma(cototient(k)) = cototient(sigma(k) - k) + cototient(k); that is, f(g(k)) = g(f(k)) where f = A001065 and g = A051953.
2
4, 16, 35, 65, 77, 78, 114, 146, 161, 185, 209, 221, 256, 335, 341, 371, 377, 437, 485, 515, 595, 611, 626, 644, 654, 671, 707, 731, 767, 779, 805, 851, 899, 917, 965, 1007, 1067, 1115, 1157, 1211, 1247, 1271, 1309, 1337, 1385, 1397, 1463, 1495, 1529, 1535, 1577, 1631, 1645, 1691, 1771
OFFSET
1,1
COMMENTS
Luca and Pomerance proved that arithmetic functions f(g(n)) and g(f(n)) are independent where f = A001065 and g = A051953. For related details and theorems see Luca & Pomerance link.
LINKS
Florian Luca and Carl Pomerance, Local behavior of the composition of the aliquot and co-totient functions, in: G. Andrews and F. Garvan (eds.), Analytic Number Theory, Modular Forms and q-Hypergeometric Series, ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham, 2017; author's copy.
EXAMPLE
35 = 5*7 is a term because A001065(A051953(35)) = A051953(A001065(35)).
MATHEMATICA
Select[Range@ 1800, Function[n, And[CompositeQ@ n, DivisorSigma[1, n - EulerPhi@ n] == (n - EulerPhi@ n) + # - EulerPhi@ # &[DivisorSigma[1, n] - n]]]] (* Michael De Vlieger, Sep 12 2017 *)
PROG
(PARI) a001065(n) = sigma(n)-n;
a051953(n) = n-eulerphi(n);
lista(nn) = forcomposite(n=4, nn, if(a051953(a001065(n))==a001065(a051953(n)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 11 2017
STATUS
approved