login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369933
The maximal exponent in the prime factorization of the exponentially 2^n numbers (A138302).
4
0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
Differs from A368473 at n = 1, 32, 89, 126, 159, ... .
LINKS
FORMULA
a(n) = A051903(A138302(n)).
a(n) = 2^A369934(n), for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=1} (2^k * (d(k) - d(k-1))) / A271727 = 1.40540547368932408503..., where d(k) = Product_{p prime} (1 - 1/p^3 + Sum_{i=2..k} (1/p^(2^i)-1/p^(2^i+1))) for k >= 1, and d(0) = 1/zeta(2).
MATHEMATICA
pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
PROG
(PARI) ispow2(n) = n >> valuation(n, 2) == 1;
lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(e)), print1(vecmax(e), ", "))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Feb 06 2024
STATUS
approved