login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369932
Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 3, 5, 2, 0, 0, 0, 0, 2, 11, 9, 3, 0, 0, 0, 0, 1, 15, 32, 16, 4, 0, 0, 0, 0, 1, 12, 63, 76, 25, 5, 0, 0, 0, 0, 0, 8, 89, 234, 162, 39, 6, 0, 0, 0, 0, 0, 5, 97, 515, 730, 332, 60, 9
OFFSET
1,20
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
T(n,k) = A123551(k,n) - A123551(k-1,n).
EXAMPLE
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 1, 1;
0, 0, 0, 1, 3, 2;
0, 0, 0, 0, 3, 5, 2;
0, 0, 0, 0, 2, 11, 9, 3;
0, 0, 0, 0, 1, 15, 32, 16, 4;
0, 0, 0, 0, 1, 12, 63, 76, 25, 5;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i)) }
{ my(A=T(12)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A369290.
Column sums are A261919.
Main diagonal is A008483.
Cf. A342557 (connected), A123551 (without endpoints).
Sequence in context: A269162 A033909 A292240 * A324881 A350734 A305930
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 07 2024
STATUS
approved