OFFSET
0,5
REFERENCES
F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..26 from Max Alekseyev)
N. J. A. Sloane, Illustration of a(0)-a(5) [Ignore the graphs with isolated nodes]
FORMULA
EXAMPLE
From Gus Wiseman, Aug 15 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 graphs (empty columns not shown):
{} {12,13,23} {12,13,24,34} {12,13,24,35,45}
{13,14,23,24,34} {12,14,25,34,35,45}
{12,13,14,23,24,34} {12,15,25,34,35,45}
{13,14,23,24,35,45}
{12,13,24,25,34,35,45}
{13,15,24,25,34,35,45}
{14,15,24,25,34,35,45}
{12,13,15,24,25,34,35,45}
{14,15,23,24,25,34,35,45}
{13,14,15,23,24,25,34,35,45}
{12,13,14,15,23,24,25,34,35,45}
(End)
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
a[n_] := b[n] - b[n-1];
CROSSREFS
The labeled version is A100743.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 15 2015
EXTENSIONS
a(1)-a(11) computed by Brendan McKay, Sep 15 2015
a(12)-a(26) computed from A004110 by Max Alekseyev, Sep 16 2015
a(0) = 1 prepended by Gus Wiseman, Aug 15 2019
STATUS
approved