login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366986
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} binomial(d+k-1,k).
0
1, 1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 7, 7, 2, 1, 6, 11, 14, 6, 4, 1, 7, 16, 25, 16, 12, 2, 1, 8, 22, 41, 36, 31, 8, 4, 1, 9, 29, 63, 71, 71, 29, 15, 3, 1, 10, 37, 92, 127, 147, 85, 50, 13, 4, 1, 11, 46, 129, 211, 280, 211, 145, 52, 18, 2, 1, 12, 56, 175, 331, 498, 463, 371, 176, 74, 12, 6
OFFSET
1,3
FORMULA
G.f. of column k: Sum_{j>=1} x^j/(1 - x^j)^(k+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
2, 4, 7, 11, 16, 22, 29, ...
3, 7, 14, 25, 41, 63, 92, ...
2, 6, 16, 36, 71, 127, 211, ...
4, 12, 31, 71, 147, 280, 498, ...
2, 8, 29, 85, 211, 463, 925, ...
PROG
(PARI) T(n, k) = sumdiv(n, d, binomial(d+k-1, k));
CROSSREFS
Columns k=0..5 give A000005, A000203, A007437, A059358, A073570, A101289.
T(n,n-1) gives A332508.
T(n,n) gives A343548.
Cf. A366977.
Sequence in context: A062001 A361043 A181847 * A209562 A259344 A239030
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 31 2023
STATUS
approved