

A259344


Array read by antidiagonals: number of inequivalent m X n (0,1)matrices under permutation of rows and permutation and/or complementation of columns.


0



1, 1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 7, 8, 3, 1, 6, 11, 19, 10, 4, 1, 7, 16, 41, 32, 16, 4, 1, 8, 23, 81, 101, 68, 20, 5
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..36.
M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 10481051. See Table II.
M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C22.12 (1973), 10481052. (Annotated scanned copy)


EXAMPLE

The first few antidiagonals are:
1,
1,2,
1,3,2,
1,4,4,3,
1,5,7,8,3,
1,6,11,19,10,4,
1,7,16,41,32,16,4,
1,8,23,81,101,68,20,5,
...


CROSSREFS

For some rows, columns, diagonals see A006380, A006281, A006382, A006383.
The second row of the array starts 2,4,7,11,16,23, which does not identify it uniquely.
Sequence in context: A062001 A181847 A209562 * A239030 A165999 A049280
Adjacent sequences: A259341 A259342 A259343 * A259345 A259346 A259347


KEYWORD

nonn,tabl,more


AUTHOR

N. J. A. Sloane, Jun 27 2015


STATUS

approved



