login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259342
Irregular triangle read by rows: T(n,k) = number of equivalence classes of binary sequences of length n containing exactly 2k ones.
1
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 4, 1, 1, 4, 8, 4, 1, 1, 4, 10, 7, 1, 1, 5, 16, 16, 5, 1, 1, 5, 20, 26, 10, 1, 1, 6, 29, 50, 29, 6, 1, 1, 6, 35, 76, 57, 14, 1, 1, 7, 47, 126, 126, 47, 7, 1, 1, 7, 56, 185, 232, 111, 19, 1, 1, 8, 72, 280, 440, 280, 72, 8, 1
OFFSET
1,7
LINKS
W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
FORMULA
Theorem 1 of Hoskins-Street gives an explicit formula.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 4, 1;
1, 4, 8, 4, 1;
1, 4, 10, 7, 1;
1, 5, 16, 16, 5, 1;
1, 5, 20, 26, 10, 1;
1, 6, 29, 50, 29, 6, 1;
1, 6, 35, 76, 57, 14, 1;
1, 7, 47, 126, 126, 47, 7, 1;
...
MAPLE
with(numtheory):
T:= (n, k)-> (add(`if`(irem(2*k*d, n)=0, phi(n/d)
*binomial(d, 2*k*d/n), 0), d=divisors(n))
+n*binomial(iquo(n, 2), k))/(2*n):
seq(seq(T(n, k), k=0..n/2), n=1..20); # Alois P. Heinz, Jun 28 2015
MATHEMATICA
T[n_, k_] := (DivisorSum[n, If[Mod[2k*#, n]==0, EulerPhi[n/#]*Binomial[#, 2k*#/n], 0]&] + n*Binomial[Quotient[n, 2], k])/(2n); Table[T[n, k], {n, 1, 20}, { k, 0, n/2}] // Flatten (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
CROSSREFS
Row sums are (essentially) A000011.
Sequence in context: A029292 A343662 A152198 * A258280 A159255 A376647
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jun 27 2015
STATUS
approved