The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259346 If n = 2^k then a(n) = 3^k, otherwise a(n) = 0. 0
 1, 3, 0, 9, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 729, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Lakhtakia, Akhlesh, and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & graphics 13.1 (1989): 59-62. See Eq. (4a). A. Lakhtakia & R. Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-62. (Annotated scanned copy) FORMULA Completely multiplicative with a(2) = 3, a(p) = 0 for odd prime p. - Andrew Howroyd, Jul 27 2018 MATHEMATICA a[n_] := With[{k = IntegerExponent[n, 2]}, If[n == 2^k, 3^k, 0]]; Array[a, 85] (* Jean-François Alcover, Aug 27 2019 *) PROG (PARI) a(n)={my(e=valuation(n, 2)); if(n == 2^e, 3^e, 0)} \\ Andrew Howroyd, Jul 27 2018 CROSSREFS Sequence in context: A303633 A167004 A287632 * A239798 A019827 A329284 Adjacent sequences:  A259343 A259344 A259345 * A259347 A259348 A259349 KEYWORD nonn,easy,mult AUTHOR N. J. A. Sloane, Jun 27 2015 EXTENSIONS More terms from Jon E. Schoenfield, Jun 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)