login
A329284
Decimal expansion of the quantile z_0.999 of the standard normal distribution.
8
3, 0, 9, 0, 2, 3, 2, 3, 0, 6, 1, 6, 7, 8, 1, 3, 5, 4, 1, 5, 4, 0, 3, 9, 9, 8, 3, 0, 1, 0, 7, 3, 7, 9, 2, 0, 5, 4, 9, 1, 0, 0, 8, 4, 9, 1, 8, 6, 5, 8, 0, 8, 8, 5, 5, 6, 9, 7, 1, 7, 1, 1, 0, 8, 5, 4, 3, 5, 6, 9, 1, 4, 2, 8, 9, 5, 1, 4, 5, 5, 5, 3, 1, 2, 2, 6, 6, 7, 2, 4, 1
OFFSET
1,1
COMMENTS
z_p is the number z such that Phi(z) = p, where Phi(x) = Integral_{t=-oo..x} (1/sqrt(2*Pi))*exp(-t^2/2)*dt is the cumulative distribution function of the standard normal distribution. This sequence gives z_0.999.
This number can also be denoted as probit(0.999), where probit(p) is the inverse function of Phi(x). See the Wikipedia link below.
LINKS
Eric Weisstein's World of Mathematics, Quantile Function
Wikipedia, Probit
EXAMPLE
If X ~ N(0,1), then P(X<=3.0902323061...) = 0.999, P(X<=-3.0902323061...) = 0.001.
PROG
(PARI) default(realprecision, 100); solve(x=0, 5, erfc(x)-2*0.001)*sqrt(2)
CROSSREFS
Quantiles of the standard normal distribution: A092678 (z_0.75), A329280 (z_0.9), A329281 (z_0.95), A329282 (z_0.99), A329283 (z_0.995), this sequence (z_0.999), A329285 (z_0.9995), A329286 (z_0.9999), A329287 (z_0.99999), A329363 (z_0.999999).
Sequence in context: A259346 A239798 A019827 * A269557 A201581 A164597
KEYWORD
nonn,cons,changed
AUTHOR
Jianing Song, Nov 12 2019
STATUS
approved