login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366977
Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1).
2
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 10, 1, 7, 17, 26, 21, 14, 1, 8, 23, 42, 42, 33, 16, 1, 9, 30, 64, 78, 73, 41, 20, 1, 10, 38, 93, 135, 149, 102, 56, 23, 1, 11, 47, 130, 220, 282, 234, 152, 69, 27, 1, 12, 57, 176, 341, 500, 493, 379, 204, 87, 29
OFFSET
1,3
FORMULA
T(n,k) = Sum_{j=1..n} binomial(j+k-1,k)*floor(n/j) = (Sum_{j=1..floor(sqrt(n))} [floor(n/j)*((k+1)*binomial(j+k-1,k)+binomial(floor(n/j)+k,k))] - floor(sqrt(n))^2*binomial(floor(sqrt(n))+k,k))/(k+1).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - x^j)^(k+1). - Seiichi Manyama, Oct 30 2023
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
5, 8, 12, 17, 23, 30, 38, 47, 57, 68, ...
8, 15, 26, 42, 64, 93, 130, 176, 232, 299, ...
10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, ...
14, 33, 73, 149, 282, 500, 839, 1344, 2070, 3083, ...
16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ...
PROG
(Python)
from math import isqrt, comb
def A366977_T(n, k): return (-(s:=isqrt(n))**2*comb(s+k, k)+sum((q:=n//j)*((k+1)*comb(j+k-1, k)+comb(q+k, k)) for j in range(1, s+1)))//(k+1)
def A366977_gen(): # generator of terms
return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n))
A366977_list = list(islice(A366977_gen(), 30))
CROSSREFS
First superdiagonal is A366978.
Columns k=0..4 give A006218, A024916, A364970, A365409, A365439.
Sequence in context: A298890 A016473 A343516 * A029637 A097207 A266101
KEYWORD
nonn,tabl
AUTHOR
Chai Wah Wu, Oct 30 2023
STATUS
approved