login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364005
Numbers whose Wythoff representation (A189921, A317208) is palindromic.
2
0, 1, 2, 5, 7, 10, 13, 15, 23, 28, 34, 36, 52, 57, 65, 75, 81, 89, 91, 117, 128, 146, 159, 175, 185, 198, 204, 217, 233, 235, 277, 295, 327, 369, 379, 400, 426, 442, 463, 473, 494, 520, 526, 547, 573, 589, 610, 612, 680, 709, 761, 829, 848, 916, 945, 989, 1023
OFFSET
1,3
COMMENTS
Includes all the odd-indexed Fibonacci numbers (A001519), since the Wythoff representation of Fibonacci(1) is 1 and the Wythoff representation of Fibonacci(2*n+1), for n >= 1, is n 0's.
A157725(n) = Fibonacci(n) + 2 is a term for n >= 4, since its Wythoff representation is n-4 1's between 2 0's.
A232970 is a subsequence since the Wythoff representation of A232970(n) = (Fibonacci(3*n+1) + 1)/2 is n 0's and n-1 1's interleaved.
LINKS
EXAMPLE
The first 10 terms are:
n a(n) A317208(a(n))
-- ---- -------------
1 0 0
2 1 1
3 2 2
4 5 22
5 7 212
6 10 2112
7 13 222
8 15 21112
9 23 211112
10 28 21212
MATHEMATICA
z[n_] := Floor[(n + 1)*GoldenRatio] - n - 1; h[n_] := z[n] - z[n - 1]; w[n_] := Module[{m = n, zm = 0, hm, s = {}}, While[zm != 1, hm = h[m]; AppendTo[s, hm]; If[hm == 1, zm = z[m], zm = z[z[m]]]; m = zm]; s]; w[0] = {0}; Select[Range[0, 1000], PalindromeQ[w[#]] &]
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jul 01 2023
STATUS
approved