OFFSET
1,3
COMMENTS
Pairs of numbers of the form {F(2*k-1)-2, F(2*k-1)-1}, for k >= 2, where F(k) is the k-th Fibonacci number, are consecutive terms in this sequence: {0, 1}, {3, 4}, {11, 12}, {32, 33}, ... - Amiram Eldar, Sep 03 2022
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
4 is a term since its dual Zeckendorf representation, 101, is palindromic.
MATHEMATICA
mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]);
pals = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^6 - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 0]), mirror[#, {0}] & /@ (select[pals, 0]), mirror[#, {1}] & /@ pals]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 11 2020
STATUS
approved