login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364003
Integers K such that PSL_2(K) is a K_4-simple group, i.e., |PSL_2(K)| has 4 distinct prime divisors.
2
11, 13, 16, 19, 23, 25, 27, 31, 32, 37, 47, 49, 53, 73, 81, 97, 107, 127, 128, 163, 193, 243, 257, 383, 487, 577, 863, 1153, 2187, 2593, 2917, 4373, 8192, 8747, 131072, 524288, 995327, 1492993, 1594323, 1990657, 5308417, 28311553, 86093443, 2147483648, 6879707137
OFFSET
1,1
COMMENTS
This sequence is conjectured to be infinite, see Bugeaud, Cao, & Mignotte.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..81
Y. Bugeaud, Z. Cao, and M. Mignotte, On Simple K4-Groups, Journal of Algebra, 241 (2001), 658-668.
EXAMPLE
|PSL_2(11)| = 660 = 2^2 * 3 * 5 * 11.
PROG
(GAP) is:=function(n)
return IsPrimePowerInt(n) and Length(Unique(FactorsInt(n*(n^2-1))))=4;
end;
Filtered([2..1000], n -> is(n)); # Charles R Greathouse IV, Jul 03 2023; edited by Lixin Zheng, Jun 23 2024
(PARI) is(n)=isprimepower(n) && omega(lcm([n-1, n, n+1]))==4 \\ Charles R Greathouse IV, Jul 03 2023
(PARI) H(n)=isprimepower(n/2^valuation(n, 2)/3^valuation(n, 3))
list(lim)=my(v=List(), N); lim\=1; for(n=1, logint(lim\2+1, 3), N=2*3^n; while(N<=lim+1, if(isprimepower(N-1) && H(N-2), listput(v, N-1)); if(isprimepower(N+1) && H(N+2) && N+1<=lim, listput(v, N+1)); N<<=1)); for(n=4, logint(N+1, 2), N=2^n; if(H(N-1) && H(N+1) && N<=lim, listput(v, N)); if(isprimepower(N-1) && H(N-2), listput(v, N-1)); if(isprimepower(N+1) && H(N+2) && N+1<=lim, listput(v, N+1))); for(n=3, logint(N, 3), N=3^n; if(H(N-1) && H(N+1), listput(v, N))); Set(v) \\ Charles R Greathouse IV, Jul 03 2023
CROSSREFS
Subsequence of A000961.
Cf. A003586.
Sequence in context: A254412 A215778 A211021 * A214746 A341162 A205693
KEYWORD
nonn
AUTHOR
Lixin Zheng, Jul 01 2023
EXTENSIONS
a(23) corrected by Charles R Greathouse IV, Jul 03 2023
a(36)-a(45) from Charles R Greathouse IV, Jul 03 2023
STATUS
approved