login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362711
a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.
0
1, 1, 17, 1177, 210249, 76961257, 50203153993, 53127675356625, 85252003916011889, 197131843368693693937, 631233222450168374457057
OFFSET
0,3
COMMENTS
M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.
The elements sum of the matrix M(n) is A002415(n+1).
The antidiagonal sum of the matrix M(n) is A005993(n-1).
The n-th row of A107985 gives the row or column sums of the matrix M(n+1).
REFERENCES
E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.
FORMULA
Conjecture: det(M(n)) = A000272(n+1).
The conjecture is true (see proof in Links). - Stefano Spezia, May 24 2023
EXAMPLE
a(2) = 17:
[4, 3, 2, 1]
[3, 6, 4, 2]
[2, 4, 6, 3]
[1, 2, 3, 4]
MATHEMATICA
M[i_, j_, n_]:=Part[Part[Table[Min[r, c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j);
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985, A362679 (permanent).
Sequence in context: A075602 A222985 A229833 * A305872 A172456 A022012
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Apr 30 2023
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
STATUS
approved