The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229833 1/p^3 * numerator((sum_{j=1..p-1} j^(p-1)) - p*Bernoulli(p-1)) with p = prime(n). 0
17, 1175, 67232195, 1282936297603, 171594913930219489, 368517627392700495869, 259067037992493907740808871, 63098504840897942292160460526547792021, 4948605372033572359620687688871811178548595, 169413083241708480729625174442441002390094469490644564301, 90165569601996395473034926239938857618854516797194687641929891 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
Sum_{j=1..p-1} j^(p-1)) == p*Bernoulli(p-1) (mod p^3) for prime p > 3 (see formulas (8) and (10) in "Lerch Quotients, ..."), so a(n) is an integer for n > 2.
LINKS
J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
EXAMPLE
Prime(3) = 5 and 1/5^3 * numerator((sum_{j=1..4} j^4) - 5*Bernoulli(4)) = 1/125 * numerator(354 - 5*(-1/6)) = 2125/125 = 17, so a(3) = 17.
MATHEMATICA
Table[p = Prime[n]; Numerator[ Sum[j^(p - 1), {j, 1, p - 1}] - p*BernoulliB[p - 1]]/p^3, {n, 3, 13}]
CROSSREFS
Cf. A197630.
Sequence in context: A232942 A075602 A222985 * A362711 A305872 A172456
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 08:56 EDT 2024. Contains 372733 sequences. (Running on oeis4.)