The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229833 1/p^3 * numerator((sum_{j=1..p-1} j^(p-1)) - p*Bernoulli(p-1)) with p = prime(n). 0
 17, 1175, 67232195, 1282936297603, 171594913930219489, 368517627392700495869, 259067037992493907740808871, 63098504840897942292160460526547792021, 4948605372033572359620687688871811178548595, 169413083241708480729625174442441002390094469490644564301, 90165569601996395473034926239938857618854516797194687641929891 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Sum_{j=1..p-1} j^(p-1)) == p*Bernoulli(p-1) (mod p^3) for prime p > 3 (see formulas (8) and (10) in "Lerch Quotients, ..."), so a(n) is an integer for n > 2. LINKS Table of n, a(n) for n=3..13. J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255. Index entries for sequences related to Bernoulli numbers. EXAMPLE Prime(3) = 5 and 1/5^3 * numerator((sum_{j=1..4} j^4) - 5*Bernoulli(4)) = 1/125 * numerator(354 - 5*(-1/6)) = 2125/125 = 17, so a(3) = 17. MATHEMATICA Table[p = Prime[n]; Numerator[ Sum[j^(p - 1), {j, 1, p - 1}] - p*BernoulliB[p - 1]]/p^3, {n, 3, 13}] CROSSREFS Cf. A197630. Sequence in context: A232942 A075602 A222985 * A362711 A305872 A172456 Adjacent sequences: A229830 A229831 A229832 * A229834 A229835 A229836 KEYWORD nonn AUTHOR Jonathan Sondow, Oct 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 08:56 EDT 2024. Contains 372733 sequences. (Running on oeis4.)