login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229836
Number of primes between n! and n^n inclusive.
1
0, 2, 6, 45, 415, 4693, 65010, 1073640, 20669837, 454793822, 11259684418, 309761863916, 9373389023182, 309374515194621, 11059527891811334, 425655578031419604, 17547665070746310736, 771403345825446116583, 36020103485009885093324
OFFSET
1,2
FORMULA
a(n) = A064151(n) - A003604(n). Add 1 for n = 2 since 2! is prime. - Jens Kruse Andersen, Jul 29 2014
EXAMPLE
There are 45 primes between 4! = 24 and 4^4 = 256.
MAPLE
with(numtheory): A229836:=n->pi(n^n)-pi(n!): (0, 2, seq(A229836(n), n=3..10)); # Wesley Ivan Hurt, Nov 17 2015
MATHEMATICA
Join[{0, 2}, Table[PrimePi[n^n] - PrimePi[n!], {n, 3, 12}]] (* Wesley Ivan Hurt, Nov 17 2015 *)
PROG
(Python)
import math
import sympy
from sympy import sieve
x = 1
while x < 50:
....y = [i for i in sieve.primerange(math.factorial(x), x**x)]
....print(len(y))
....x += 1
(Python)
from math import factorial
from sympy import primepi
def A229836(n): return primepi(n**n)-primepi(factorial(n)-1) # Chai Wah Wu, Jun 06 2024
(PARI) a(n)=primepi(n^n)-primepi(n!-1) \\ Charles R Greathouse IV, Apr 30 2014
(PARI) a(n) = if(n==2, 2, primepi(n^n)-primepi(n!)) \\ Altug Alkan, Nov 17 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Derek Orr, Dec 30 2013
EXTENSIONS
a(12)-a(16) from Jens Kruse Andersen, Jul 29 2014
a(17)-a(18) from Chai Wah Wu, Jun 06 2024
a(19) from Amiram Eldar, Jun 11 2024
STATUS
approved