login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229835
Number of ways to write n = (p - 1)/6 + q, where p is a prime, and q is a term of the sequence A000009.
2
0, 1, 2, 3, 3, 4, 5, 5, 5, 4, 6, 5, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 10, 9, 6, 8, 6, 10, 8, 9, 7, 7, 10, 10, 9, 8, 7, 10, 7, 10, 3, 7, 12, 8, 10, 6, 8, 9, 6, 10, 8, 11, 7, 11, 8, 7, 9, 8, 12, 10, 8, 12, 7, 9, 10, 10, 8, 11, 10, 7, 10, 9, 14, 9, 9, 9, 8, 10, 10, 9, 7, 8, 9, 9, 8, 10, 9, 10, 10, 9, 7, 8, 7, 12, 8
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1. Also, any integer n > 1 can be written as (p + 1)/6 + q, where p is a prime and q is a term of A000009.
We have verified this for n up to 2*10^8. Note that 26128189 cannot be written as (p - 1)/4 + q with p a prime and q a term of A000009. Also, 65152682 cannot be written as (p + 1)/4 + q with p a prime and q a term of A000009.
EXAMPLE
a(2) = 1 since 2 = (7 - 1)/ 6 + 1 with 7 prime, and 1 = A000009(i) for i = 0, 1, 2.
a(3) = 2 since 3 = (7 - 1 )/6 + 2 with 7 prime and 2 = A000009(3) = A000009(4), and 3 = (13 - 1 )/6 + 1 with 13 prime and 1 = A000009(i) for i = 0, 1, 2.
MATHEMATICA
Do[m=0; Do[If[PartitionsQ[k]>=n, Goto[aa]]; If[k>1&&PartitionsQ[k]==PartitionsQ[k-1], Goto[bb]];
If[PrimeQ[6(n-PartitionsQ[k])+1], m=m+1]; Label[bb]; Continue, {k, 1, 2n}];
Label[aa]; Print[n, " ", m]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 19 2013
STATUS
approved