login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229839
Consider all 60-degree triangles with sides A < B < C. The sequence gives the values of C.
4
8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60, 63, 64, 65, 70, 72, 75, 77, 80, 84, 88, 90, 91, 96, 99, 104, 105, 110, 112, 117, 119, 120, 126, 128, 130, 133, 135, 136, 140, 143, 144, 147, 150, 152, 153, 154, 160, 165, 168, 171, 175, 176, 180, 182
OFFSET
1,1
COMMENTS
A009005 gives the values of A, and A050931 gives the values of B.
The side n of an equilateral triangle for which a nontrivial integral cevian of length less than n exists, which divides an edge into two integral parts. - Colin Barker, Sep 09 2014
EXAMPLE
16 appears in the sequence because there exists a 60-degree triangle with sides 6, 14 and 16.
MATHEMATICA
list={}; cmax=182;
Do[If[IntegerQ[Sqrt[e^2-e t+t^2]], AppendTo[list, e]], {e, 2, cmax}, {t, 1, e-1}]
list//DeleteDuplicates (* Herbert Kociemba, Apr 25 2021 *)
PROG
(PARI)
\\ Gives values of C not exceeding cmax.
\\ e.g. t60c(60) gives [8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60]
t60c(cmax) = {
v=pt60c(cmax);
s=[];
for(i=1, #v,
for(m=1, cmax\v[i],
if(v[i]*m<=cmax, s=concat(s, v[i]*m))
)
);
vecsort(s, , 8)
}
\\ Gives values of C not exceeding cmax in primitive triangles.
\\ e.g. pt60c(115) gives [8, 15, 21, 35, 40, 48, 55, 65, 77, 80, 91, 96, 99, 112]
pt60c(cmax) = {
s=[];
for(m=1, ceil(sqrt(cmax+1)),
for(n=1, m-1,
if((m-n)%3!=0 && gcd(m, n)==1,
if(2*m*n+m*m<=cmax, s=concat(s, 2*m*n+m*m))
)
)
);
vecsort(s, , 8)
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Oct 01 2013
STATUS
approved