OFFSET
1,3
COMMENTS
A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
A nontrivial cevian is one that does not coincide with a side of the triangle.
For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0.
LINKS
Colin Barker, Table of n, a(n) for n = 1..10000
Wikipedia, Cevian
FORMULA
Conjectures from Colin Barker, Jun 06 2016: (Start)
a(n) = 3*a(n-4)-3*a(n-8)+a(n-12) for n>14.
G.f.: x^3*(7 +19*x^2 +14*x^3 +16*x^4 +13*x^5 +4*x^6 -4*x^7 +x^8 -11*x^9 +x^10 +2*x^11 +4*x^13) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3).
(End)
MATHEMATICA
Rest@ CoefficientList[Series[x^3 (7 + 19 x^2 + 14 x^3 + 16 x^4 + 13 x^5 + 4 x^6 - 4 x^7 + x^8 - 11 x^9 + x^10 + 2 x^11 + 4 x^13)/((1 - x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 53}], x] (* Michael De Vlieger, Jun 06 2016 *)
PROG
(PARI)
\\ Returns the length of the longest integral cevian of an equilateral triangle of side n.
longest(n) = {
s=[];
m=12*n^2;
fordiv(m, f,
g=m\f;
if(f<=g && (f+g)%2==0,
x=(f+g)\2;
if(x%4==0,
s=concat(s, x\4)
)
)
);
if(#s==1, return(0));
for(i=1, #s, if(s[i]!=n, return(s[i])))
}
vector(100, n, longest(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Sep 07 2014
STATUS
approved