login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246919
The length of the longest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists.
4
0, 0, 7, 0, 19, 14, 37, 13, 61, 38, 91, 28, 127, 74, 169, 49, 217, 122, 271, 76, 331, 182, 397, 109, 469, 254, 547, 148, 631, 338, 721, 193, 817, 434, 919, 244, 1027, 542, 1141, 301, 1261, 662, 1387, 364, 1519, 794, 1657, 433, 1801, 938, 1951, 508, 2107
OFFSET
1,3
COMMENTS
A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
A nontrivial cevian is one that does not coincide with a side of the triangle.
For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0.
LINKS
Wikipedia, Cevian
FORMULA
Conjectures from Colin Barker, Jun 06 2016: (Start)
a(n) = 3*a(n-4)-3*a(n-8)+a(n-12) for n>14.
G.f.: x^3*(7 +19*x^2 +14*x^3 +16*x^4 +13*x^5 +4*x^6 -4*x^7 +x^8 -11*x^9 +x^10 +2*x^11 +4*x^13) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3).
(End)
MATHEMATICA
Rest@ CoefficientList[Series[x^3 (7 + 19 x^2 + 14 x^3 + 16 x^4 + 13 x^5 + 4 x^6 - 4 x^7 + x^8 - 11 x^9 + x^10 + 2 x^11 + 4 x^13)/((1 - x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 53}], x] (* Michael De Vlieger, Jun 06 2016 *)
PROG
(PARI)
\\ Returns the length of the longest integral cevian of an equilateral triangle of side n.
longest(n) = {
s=[];
m=12*n^2;
fordiv(m, f,
g=m\f;
if(f<=g && (f+g)%2==0,
x=(f+g)\2;
if(x%4==0,
s=concat(s, x\4)
)
)
);
if(#s==1, return(0));
for(i=1, #s, if(s[i]!=n, return(s[i])))
}
vector(100, n, longest(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Sep 07 2014
STATUS
approved