login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305872
Number of nonseparable rooted maps of genus n with one vertex and one face.
1
1, 1, 17, 1259, 200589, 54766516, 22839203295, 13532959408258, 10826939105517381, 11256605684271733244, 14762470788227855508388, 23845795018908512860754771, 46527914721396710095597849515, 107904469663880176355586920421756, 293401777662120053352713701982623322
OFFSET
0,3
LINKS
T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
FORMULA
The g.f. A(x) satisfies A035319(x) = A[x*(A035319(x)^4)], where A035319 is the o.g.f. of A035319.
MAPLE
g := 1+x ;
for itr from 2 to 14 do
g := g+a*x^itr;
Ax := add(A035319(i)*x^i, i=0..itr+1) ;
x*Ax^4 ;
z := subs(x=%, g)-Ax ;
z := expand(z) ;
z := taylor(z, x=0, itr+1) ;
z := convert(z, polynom) ;
aa := solve(z, a) ;
g := g-a*x^itr+aa*x^itr ;
print(g) ;
end do:
PROG
(PARI)
seq(N) = {
my(s = 1+'x*Ser(vector(N, n, (4*n)!/((2*n+1)!*4^n))));
Vec(subst(s, 'x, serreverse('x*s^4)));
};
seq(14) \\ Gheorghe Coserea, Jun 13 2018
CROSSREFS
Cf. A035319.
Sequence in context: A222985 A229833 A362711 * A172456 A022012 A347851
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 12 2018
STATUS
approved