login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305869
Expansion of Product_{k>=1} (1 + x^k)^(2*k-1)!!.
3
1, 1, 3, 18, 123, 1098, 11806, 150406, 2218065, 37206485, 699604235, 14572941915, 333037896380, 8283300923765, 222714069807495, 6436292165450693, 198941178161054798, 6548632634238445779, 228705772883364303114, 8446082393596031365629, 328846269698068735291665, 13462627492562640070346824
OFFSET
0,3
COMMENTS
Weigh transform of A001147.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Double Factorial
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^A001147(k).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(doublefactorial(2*i-1), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Jun 13 2018
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 12 2018
STATUS
approved