login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305867
Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k-1)!!.
3
1, 1, 4, 19, 130, 1120, 11960, 151595, 2230550, 37361755, 701873371, 14610774346, 333746628499, 8298025724194, 223049950124065, 6444634486214748, 199165237980655863, 6555102341516877027, 228905611339161301812, 8452656930719845696590, 329075775511339959533232, 13471099892869946627980017
OFFSET
0,3
COMMENTS
Euler transform of A001147.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Double Factorial
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A001147(k).
MAPLE
N:= 25:
S:=series(mul((1-x^k)^(-doublefactorial(2*k-1)), k=1..N), x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jun 12 2018
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 12 2018
STATUS
approved