login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280088 Expansion of Product_{k>=1} 1/(1 - x^k)^(k!!). 1
1, 1, 3, 6, 17, 38, 112, 280, 882, 2416, 8253, 24458, 91051, 289704, 1172288, 3980034, 17413820, 62706119, 294608079, 1118820630, 5603910081, 22328924231, 118432939871, 492897768426, 2752203529333, 11918139966134, 69709167028426, 313080284080648, 1910245872252972, 8873669214476627, 56283324138424814, 269790676411694902 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Euler transform of the double factorials (A006882).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

Index entries for sequences related to factorial numbers

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^k)^(k!!).

a(n) ~ n!!. - Vaclav Kotesovec, Dec 25 2016

MATHEMATICA

nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(k!!), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A006882, A107895.

Sequence in context: A049943 A231184 A027415 * A151503 A007718 A275057

Adjacent sequences:  A280085 A280086 A280087 * A280089 A280090 A280091

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 25 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 02:44 EDT 2017. Contains 287211 sequences.