login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280088
Expansion of Product_{k>=1} 1/(1 - x^k)^(k!!).
2
1, 1, 3, 6, 17, 38, 112, 280, 882, 2416, 8253, 24458, 91051, 289704, 1172288, 3980034, 17413820, 62706119, 294608079, 1118820630, 5603910081, 22328924231, 118432939871, 492897768426, 2752203529333, 11918139966134, 69709167028426, 313080284080648, 1910245872252972, 8873669214476627, 56283324138424814, 269790676411694902
OFFSET
0,3
COMMENTS
Euler transform of the double factorials (A006882).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k!!).
a(n) ~ n!!. - Vaclav Kotesovec, Dec 25 2016
MATHEMATICA
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(k!!), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A231184 A291227 A027415 * A151503 A319789 A007718
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 25 2016
STATUS
approved