login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280087
Numbers n such that Product_{d|n} sigma(d) = Product_{d|n+1} sigma(d).
0
14, 1334, 1634, 2685, 33998, 42818, 84134, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 1642154, 2284814, 2913105, 3571905, 3682622, 5181045, 6771405, 10074477, 10195305, 12825266, 15751533, 17714486, 17727554, 19886385, 25096665, 33422277, 34577834, 34883654
OFFSET
1,1
COMMENTS
sigma(n) is the sum of the divisors of n (A000203).
Numbers n such that A206032(n) = A206032(n+1).
EXAMPLE
14 is a term because Product_{d|14} sigma(d) = 1 * 3 * 8 * 24 = Product_{d|15} sigma(d) = 1 * 4 * 6 * 24 = 576.
MATHEMATICA
Select[Range[5000], Times @@ DivisorSigma[1, Divisors[#]] == Times @@ DivisorSigma[1, Divisors[# + 1]] &] (* G. C. Greubel, Dec 26 2016 *)
PROG
(Magma) [n: n in [1..1000] | &*[SumOfDivisors(d): d in Divisors(n)] eq &*[SumOfDivisors(d): d in Divisors(n+1)]]
(PARI) isok(n) = my(d = divisors(n), dd = divisors(n+1)); prod(k=1, #d, sigma(d[k])) == prod(k=1, #dd, sigma(dd[k])); \\ Michel Marcus, Dec 26 2016
CROSSREFS
Sequence in context: A160107 A322256 A054004 * A240703 A240640 A204698
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2016
EXTENSIONS
More terms from Michel Marcus, Dec 26 2016
STATUS
approved