login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231184
Coefficients of the nonnegative powers of rho(11) = 2*cos(Pi/11) when written in the power basis of the degree 5 number field Q(rho(11)). Negative of the coefficients of the second power.
4
-1, 0, 0, 3, 6, 17, 32, 73, 135, 286, 528, 1080, 2002, 4015, 7485, 14827, 27796, 54606, 102869, 200909, 380006, 739013, 1402309, 2718485, 5171573, 10001553, 19064476, 36802823, 70259834, 135444612, 258883604, 498538557, 953762458
OFFSET
0,4
COMMENTS
The formula for rho(11)^n is (see A231182): rho(11)^n = A231182(n)*1 - A231183(n)*rho(11) - a(n-2)*rho(11)^2 + A231185(n-3)*rho(11)^3 + A231182(n+1)*rho(11)^4, n >= 0.
FORMULA
G.f.: (-1 + x + 4*x^2)/(1-x-4*x^2+3*x^3+3*x^4-x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n >= 3, with a(-2)=a(-1)=0 , a(0)=-1, a(1)=a(2)=0.
a(n) = -b(n) + b(n-1) + 4*b(n-2), n>=0, with b(n) = A231181(n).
EXAMPLE
rho(11)^5 = 1*1 - 3*rho(11) - 3*rho(11)^2 + 4*rho(11)^3 + 1*rho(11)^4. Approximately 26.02309649, with rho(11) approximately 1.918985947.
MATHEMATICA
LinearRecurrence[{1, 4, -3, -3, 1}, {-1, 0, 0, 3, 6}, 40] (* Harvey P. Dale, Apr 26 2019 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Nov 07 2013
STATUS
approved