login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362713
Expansion of e.g.f. x*2F1([3/4, 3/4], [3/2], 4*x^2)/2F1([1/4, 1/4], [1/2], 4*x^2), odd powers only.
2
1, 6, 256, 28560, 6071040, 2098483200, 1071889920000, 758870167910400, 711206089850880000, 852336059876720640000, 1271438437097485762560000, 2310211006286602237378560000, 5023141810386294125321256960000, 12877606625796048169971744768000000, 38439740210093310755176533983232000000
OFFSET
0,2
LINKS
Christian Krattenthaler and Thomas W. Müller, The congruence properties of Romik's sequence of Taylor coefficients of Jacobi's theta function theta_3, arXiv:2304.11471 [math.NT], 2023. See p. 5.
FORMULA
a(n) = Product_{j=1..n} (4*j - 1)^2 - Sum_{m=0..n-1} binomial(2*n+1, 2*m+1)*Product_{j=1..n-m} (4*j - 3)^2*a(m) for n > 0.
MATHEMATICA
Table[(2n+1)!SeriesCoefficient[x*Hypergeometric2F1[3/4, 3/4, 3/2, 4*x^2]/Hypergeometric2F1[1/4, 1/4, 1/2, 4*x^2], {x, 0, 2n+1}], {n, 0, 14}]
(* or *)
a[0]=1; a[n_]:=Product[(4j-1)^2, {j, n}]-Sum[Binomial[2n+1, 2m+1]Product[(4j-3)^2, {j, n-m}]a[m], {m, 0, n-1}]; Array[a, 15, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Apr 30 2023
STATUS
approved