login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.
0

%I #28 Oct 15 2023 09:27:03

%S 1,1,17,1177,210249,76961257,50203153993,53127675356625,

%T 85252003916011889,197131843368693693937,631233222450168374457057

%N a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.

%C M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.

%C The elements sum of the matrix M(n) is A002415(n+1).

%C The antidiagonal sum of the matrix M(n) is A005993(n-1).

%C The n-th row of A107985 gives the row or column sums of the matrix M(n+1).

%D E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.

%H Chao Ju, <a href="https://arxiv.org/abs/2304.11830">Chern-Simons Theory, Ehrhart Polynomials, and Representation Theory</a>, arXiv:2304.11830 [math-ph], 2023. See p. 14.

%H Stefano Spezia, <a href="/A362679/a362679.pdf">A determinantal formula for the number of trees on n labeled nodes</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hafnian">Hafnian</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Special_unitary_group">Special unitary group</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_matrix">Symmetric matrix</a>

%F Conjecture: det(M(n)) = A000272(n+1).

%F The conjecture is true (see proof in Links). - _Stefano Spezia_, May 24 2023

%e a(2) = 17:

%e [4, 3, 2, 1]

%e [3, 6, 4, 2]

%e [2, 4, 6, 3]

%e [1, 2, 3, 4]

%t M[i_, j_, n_]:=Part[Part[Table[Min[r,c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]

%o (PARI) tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j);

%o a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ _Michel Marcus_, May 02 2023

%Y Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985, A362679 (permanent).

%K nonn,hard,more

%O 0,3

%A _Stefano Spezia_, Apr 30 2023

%E a(6) from _Michel Marcus_, May 02 2023

%E a(7)-a(10) from _Pontus von Brömssen_, Oct 15 2023