login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361784
Harmonic means the bi-unitary divisors of the bi-unitary harmonic numbers (A286325).
2
1, 2, 3, 4, 4, 6, 7, 7, 8, 11, 13, 13, 12, 10, 16, 7, 18, 16, 15, 24, 15, 20, 20, 18, 14, 22, 25, 24, 19, 25, 23, 27, 33, 31, 44, 32, 34, 30, 25, 36, 13, 46, 31, 21, 29, 40, 38, 33, 28, 40, 48, 38, 29, 45, 34, 47, 28, 32, 32, 44, 60, 27, 32, 28, 46, 26, 51
OFFSET
1,2
LINKS
Jozsef Sandor, On bi-unitary harmonic numbers, arXiv:1105.0294 [math.NT], 2011.
FORMULA
a(n) = A361782(A286325(n)).
EXAMPLE
a(3) = 3 since A286325(3) = 45, the bi-unitary divisors of 45 are 1, 5, 9, and 45, and their harmonic mean is 3.
MATHEMATICA
f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^5], IntegerQ]
PROG
(PARI) bhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
lista(kmax) = {my(bh); for(k = 1, kmax, bh = bhmean(k); if(denominator(bh) == 1, print1(bh, ", "))); }
CROSSREFS
Similar sequences: A001600, A006087, A361318.
Sequence in context: A089266 A178993 A193768 * A361318 A205791 A039696
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 24 2023
STATUS
approved