login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361785
Indices of records in the sequence of bi-unitary harmonic means A361782(k)/A361783(k).
1
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 96, 120, 168, 210, 240, 270, 280, 360, 420, 480, 672, 840, 1080, 1320, 1512, 1680, 1890, 2160, 2310, 2520, 3080, 3360, 4320, 5280, 6048, 7392, 7560, 9240, 10920, 11880, 14040, 15120, 18480, 20790
OFFSET
1,2
LINKS
EXAMPLE
The harmonic means of the bi-unitary divisors of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. A361782(7)/A361783(7) = 9/5 < 2, and the next record, A361782(8)/A361783(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
MATHEMATICA
f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; buhmean[1] = 1; buhmean[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{buh, buhmax = 0, s = {}}, Do[buh = buhmean[k]; If[buh > buhmax, buhmax = buh; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
PROG
(PARI) buhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
lista(kmax) = {my(buh, buhmax=0); for(k = 1, kmax, buh = buhmean(k); if(buh > buhmax, buhmax = buh; print1(k, ", "))); }
CROSSREFS
Similar sequences: A179971, A348654, A361319.
Other sequences related to records of bi-unitary divisors: A293185, A292983, A292984.
Sequence in context: A003044 A279077 A018541 * A361319 A018293 A015702
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 24 2023
STATUS
approved