login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361319
Indices of records in the sequence of infinitary harmonic means A361316(k)/A361317(k).
2
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 105, 120, 168, 210, 264, 270, 280, 360, 420, 540, 660, 756, 840, 1080, 1320, 1512, 1848, 1890, 2310, 2520, 3080, 3640, 3780, 4620, 5460, 5940, 7020, 7560, 9240, 10920, 11880, 14040, 16632, 19656
OFFSET
1,2
LINKS
EXAMPLE
The infinitary harmonic means of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. The next record, A361316(8)/A361317(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
MATHEMATICA
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; ihmean[1] = 1; ihmean[n_] := n*Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{ih, ihmax = 0, s = {}}, Do[ih = ihmean[k]; If[ih > ihmax, ihmax = ih; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
PROG
(PARI) ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
lista(kmax) = {my(ih, ihmax=0); for(k = 1, kmax, ih = ihmean(k); if(ih > ihmax, ihmax = ih; print1(k, ", "))); }
CROSSREFS
Similar sequences: A179971, A348654.
Other sequences related to records of infinitary divisors: A037992, A327634.
Sequence in context: A279077 A018541 A361785 * A018293 A015702 A362127
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 09 2023
STATUS
approved