|
|
A205791
|
|
Least positive integer k such that n divides k^5-j^5 for some j in [1,k-1].
|
|
1
|
|
|
2, 3, 4, 4, 6, 7, 8, 4, 6, 11, 3, 8, 14, 15, 16, 4, 18, 9, 20, 12, 22, 3, 24, 8, 6, 27, 6, 16, 30, 31, 2, 4, 4, 35, 36, 12, 38, 39, 40, 12, 7, 43, 44, 5, 18, 47, 48, 8, 14, 11, 52, 28, 54, 9, 7, 16, 58, 59, 60, 32, 7, 4, 24, 6, 66, 8, 68, 36, 70, 71, 4, 12, 74, 75, 16, 40
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For a guide to related sequences, see A204892.
|
|
LINKS
|
Table of n, a(n) for n=1..76.
|
|
EXAMPLE
|
1 divides 2^5-1^5 -> k=2, j=1
2 divides 3^5-1^5 -> k=3, j=1
3 divides 4^5-1^5 -> k=4, j=1
4 divides 4^5-2^5 -> k=4, j=2
5 divides 6^5-1^5 -> k=6, j=1
6 divides 7^5-1^5 -> k=7, j=1
|
|
MATHEMATICA
|
s = Table[n^4, {n, 1, 120}] ;
lk = Table[
NestWhile[# + 1 &, 1,
Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,
Length[s]}]
Table[NestWhile[# + 1 &, 1,
Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
(* Peter J. C. Moses, Jan 27 2012 *)
|
|
CROSSREFS
|
Cf. A204892.
Sequence in context: A089266 A178993 A193768 * A039696 A076332 A245092
Adjacent sequences: A205788 A205789 A205790 * A205792 A205793 A205794
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling, Feb 01 2012
|
|
STATUS
|
approved
|
|
|
|