Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 24 2023 11:15:14
%S 1,2,3,4,4,6,7,7,8,11,13,13,12,10,16,7,18,16,15,24,15,20,20,18,14,22,
%T 25,24,19,25,23,27,33,31,44,32,34,30,25,36,13,46,31,21,29,40,38,33,28,
%U 40,48,38,29,45,34,47,28,32,32,44,60,27,32,28,46,26,51
%N Harmonic means the bi-unitary divisors of the bi-unitary harmonic numbers (A286325).
%H Amiram Eldar, <a href="/A361784/b361784.txt">Table of n, a(n) for n = 1..313</a>
%H Jozsef Sandor, <a href="https://arxiv.org/abs/1105.0294">On bi-unitary harmonic numbers</a>, arXiv:1105.0294 [math.NT], 2011.
%F a(n) = A361782(A286325(n)).
%e a(3) = 3 since A286325(3) = 45, the bi-unitary divisors of 45 are 1, 5, 9, and 45, and their harmonic mean is 3.
%t f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^5], IntegerQ]
%o (PARI) bhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
%o lista(kmax) = {my(bh); for(k = 1, kmax, bh = bhmean(k); if(denominator(bh) == 1, print1(bh, ", "))); }
%Y Cf. A188999, A286324, A286325, A361782, A361783.
%Y Similar sequences: A001600, A006087, A361318.
%K nonn
%O 1,2
%A _Amiram Eldar_, Mar 24 2023