login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361304
Expansion of g.f. A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(4*n) / n!.
2
1, 2, 18, 124, 930, 7146, 55804, 441312, 3521898, 28307510, 228820086, 1858240956, 15149110912, 123905220292, 1016261712240, 8355494725376, 68842600563918, 568266625104498, 4698576694639306, 38906632384471820, 322596353513983626, 2678048134387075560
OFFSET
0,2
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(4*n) / n!.
(2) A(x) = d/dx Series_Reversion(x - x^2*(1 + x)^4).
(3) B(x - x^2*A(x)^3) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1+x)^(4*n) / n! ) is the g.f. of A361306.
(4) a(n) = (n+1) * A361306(n+1) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 930*x^4 + 7146*x^5 + 55804*x^6 + 441312*x^7 + 3521898*x^8 + 28307510*x^9 + ...
PROG
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); A = sum(m=0, n, Dx(m, x^(2*m)*(1+x +O(x^(n+1)))^(4*m)/m!)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Using series reversion (faster) */
{a(n) = my(A=1); A = deriv( serreverse(x - x^2*(1+x +O(x^(n+3)))^4 )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052653 A342124 A289830 * A358952 A060589 A325275
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 08 2023
STATUS
approved