Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 09 2023 09:00:46
%S 1,2,18,124,930,7146,55804,441312,3521898,28307510,228820086,
%T 1858240956,15149110912,123905220292,1016261712240,8355494725376,
%U 68842600563918,568266625104498,4698576694639306,38906632384471820,322596353513983626,2678048134387075560
%N Expansion of g.f. A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(4*n) / n!.
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
%F (1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(4*n) / n!.
%F (2) A(x) = d/dx Series_Reversion(x - x^2*(1 + x)^4).
%F (3) B(x - x^2*A(x)^3) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1+x)^(4*n) / n! ) is the g.f. of A361306.
%F (4) a(n) = (n+1) * A361306(n+1) for n >= 0.
%e G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 930*x^4 + 7146*x^5 + 55804*x^6 + 441312*x^7 + 3521898*x^8 + 28307510*x^9 + ...
%o (PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n) = my(A=1); A = sum(m=0, n, Dx(m, x^(2*m)*(1+x +O(x^(n+1)))^(4*m)/m!)); polcoeff(A, n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) /* Using series reversion (faster) */
%o {a(n) = my(A=1); A = deriv( serreverse(x - x^2*(1+x +O(x^(n+3)))^4 )); polcoeff(A, n)}
%o for(n=0, 25, print1(a(n), ", "))
%Y Cf. A361306, A214372.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Mar 08 2023