The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361303 Expansion of g.f. A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(3*n) / n!. 0
1, 2, 15, 92, 615, 4200, 29190, 205416, 1458909, 10436030, 75079719, 542669244, 3937604853, 28664996080, 209261546580, 1531373181120, 11230365782130, 82512324300222, 607246350958449, 4475646134515360, 33031356134381220, 244073892799489500, 1805479496422561740 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(3*n) / n!.
(2) A(x) = d/dx Series_Reversion(x - x^2*(1 + x)^3).
(3) B(x - x^2*A(x)^3) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1+x)^(3*n) / n! ) is the g.f. of A361305.
(4) a(n) = (n+1) * A361305(n+1) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 15*x^2 + 92*x^3 + 615*x^4 + 4200*x^5 + 29190*x^6 + 205416*x^7 + 1458909*x^8 + 10436030*x^9 + ...
PROG
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); A = sum(m=0, n, Dx(m, x^(2*m)*(1+x +O(x^(n+1)))^(3*m)/m!)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Using series reversion (faster) */
{a(n) = my(A=1); A = deriv( serreverse(x - x^2*(1+x +O(x^(n+3)))^3 )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A192369 A037753 A037641 * A288952 A356554 A356578
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 08 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2024. Contains 372882 sequences. (Running on oeis4.)