The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A361303 Expansion of g.f. A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(3*n) / n!. 0
 1, 2, 15, 92, 615, 4200, 29190, 205416, 1458909, 10436030, 75079719, 542669244, 3937604853, 28664996080, 209261546580, 1531373181120, 11230365782130, 82512324300222, 607246350958449, 4475646134515360, 33031356134381220, 244073892799489500, 1805479496422561740 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..22. FORMULA G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following. (1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(3*n) / n!. (2) A(x) = d/dx Series_Reversion(x - x^2*(1 + x)^3). (3) B(x - x^2*A(x)^3) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1+x)^(3*n) / n! ) is the g.f. of A361305. (4) a(n) = (n+1) * A361305(n+1) for n >= 0. EXAMPLE G.f.: A(x) = 1 + 2*x + 15*x^2 + 92*x^3 + 615*x^4 + 4200*x^5 + 29190*x^6 + 205416*x^7 + 1458909*x^8 + 10436030*x^9 + ... PROG (PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D} {a(n) = my(A=1); A = sum(m=0, n, Dx(m, x^(2*m)*(1+x +O(x^(n+1)))^(3*m)/m!)); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* Using series reversion (faster) */ {a(n) = my(A=1); A = deriv( serreverse(x - x^2*(1+x +O(x^(n+3)))^3 )); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A361305, A215128, A361046. Sequence in context: A192369 A037753 A037641 * A288952 A356554 A356578 Adjacent sequences: A361300 A361301 A361302 * A361304 A361305 A361306 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 08 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2024. Contains 372882 sequences. (Running on oeis4.)