The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060589 a(n) = 2*(2^n-1)*3^(n-1). 3
 0, 2, 18, 126, 810, 5022, 30618, 185166, 1115370, 6705342, 40271418, 241746606, 1450833930, 8706066462, 52239587418, 313447090446, 1880711240490, 11284353536382, 67706379498618, 406239051832686, 2437436635519050, 14624626786683102, 87747781640805018 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/3^n is the expected time to finish a random Tower of Hanoi problem with n disks using optimal moves. LINKS Harry J. Smith, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (9,-18). FORMULA a(n) = Sum_{j<2^n} j*A001316(j) = 6*a(n-1) + A008776(n-1) = 4*A000400(n-1) - A008776(n-1) = A000244(n)*A060590(n)/A010684(n). G.f.: 2*x/((3*x-1)*(6*x-1)). [Colin Barker, Dec 26 2012] MATHEMATICA Table[2 (2^n - 1) 3^(n - 1), {n, 0, 50}] (* or *) LinearRecurrence[{9, -18}, {0, 2}, 40] (* Vincenzo Librandi, Jul 03 2018 *) PROG (PARI) a(n)={2*(2^n - 1)*3^(n - 1)} \\ Harry J. Smith, Jul 07 2009 (Magma) [2*(2^n - 1)*3^(n - 1): n in [0..30]]; // Vincenzo Librandi, Jul 03 2018 CROSSREFS Cf. A007798, A060586, A060590. Sequence in context: A289830 A361304 A358952 * A325275 A277661 A367553 Adjacent sequences: A060586 A060587 A060588 * A060590 A060591 A060592 KEYWORD nonn,easy AUTHOR Henry Bottomley, Apr 05 2001 EXTENSIONS Corrected by T. D. Noe, Nov 07 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 14:08 EDT 2024. Contains 372717 sequences. (Running on oeis4.)