login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060589
a(n) = 2*(2^n-1)*3^(n-1).
3
0, 2, 18, 126, 810, 5022, 30618, 185166, 1115370, 6705342, 40271418, 241746606, 1450833930, 8706066462, 52239587418, 313447090446, 1880711240490, 11284353536382, 67706379498618, 406239051832686, 2437436635519050, 14624626786683102, 87747781640805018
OFFSET
0,2
COMMENTS
a(n)/3^n is the expected time to finish a random Tower of Hanoi problem with n disks using optimal moves.
FORMULA
a(n) = Sum_{j<2^n} j*A001316(j) = 6*a(n-1) + A008776(n-1) = 4*A000400(n-1) - A008776(n-1) = A000244(n)*A060590(n)/A010684(n).
G.f.: 2*x/((3*x-1)*(6*x-1)). [Colin Barker, Dec 26 2012]
MATHEMATICA
Table[2 (2^n - 1) 3^(n - 1), {n, 0, 50}] (* or *) LinearRecurrence[{9, -18}, {0, 2}, 40] (* Vincenzo Librandi, Jul 03 2018 *)
PROG
(PARI) a(n)={2*(2^n - 1)*3^(n - 1)} \\ Harry J. Smith, Jul 07 2009
(Magma) [2*(2^n - 1)*3^(n - 1): n in [0..30]]; // Vincenzo Librandi, Jul 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 05 2001
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved