login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358952
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
9
1, 2, 18, 124, 1244, 11652, 122153, 1281722, 14009973, 154993908, 1748602308, 19949674928, 230299666100, 2682127476280, 31492460744869, 372295036400060, 4428101312591810, 52949362040059258, 636176332781478365, 7676183282453865394, 92978971123440688904
OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(3*n*(n-1)) / (1 - 2*A(x)*x^n)^(3*n-1).
a(n) ~ c * d^n / n^(3/2), where d = 13.043520100475... and c = 0.432996977380... - Vaclav Kotesovec, Dec 08 2022
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 1244*x^4 + 11652*x^5 + 122153*x^6 + 1281722*x^7 + 14009973*x^8 + 154993908*x^9 + 1748602308*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^(2*n) * (x^n - 2*Ser(A))^(3*n+1) ), #A-1)/2); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2022
STATUS
approved