login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052653
E.g.f. (1-2x^2)/(1-x-2x^2).
0
1, 1, 2, 18, 120, 1320, 15120, 216720, 3427200, 62052480, 1237420800, 27263174400, 653837184000, 17005993804800, 476080648243200, 14283727121664000, 457058345103360000, 15540339420942336000
OFFSET
0,3
FORMULA
E.g.f.: (-1+2*x^2)/(-1+x+2*x^2)
Recurrence: {a(1)=1, a(0)=1, a(2)=2, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0}
Sum(-1/9*(-2+_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!
a(n) = n!*A001045(n), n>0. - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Sequence(Prod(Z, Union(Z, Z)))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-2x^2)/(1-x-2x^2), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Feb 13 2013 *)
CROSSREFS
Sequence in context: A058052 A119578 A052610 * A342124 A289830 A361304
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved