OFFSET
2,1
COMMENTS
The triangle starts with n = 2, and k ranges from 0 to n - 2.
LINKS
EXAMPLE
Triangle begins:
2
2 1
3 1 1
2 3 1 1
4 3 2 1 1
2 6 3 2 1 1
4 6 6 2 2 1 1
3 10 6 5 2 2 1 1
4 11 11 6 4 2 2 1 1
2 16 13 10 5 4 2 2 1 1
6 17 19 12 9 4 4 2 2 1 1
2 24 24 18 11 8 4 4 2 2 1 1
4 27 34 22 17 10 7 4 4 2 2 1 1
4 35 39 33 20 15 9 7 4 4 2 2 1 1
5 39 56 39 30 19 14 8 7 4 4 2 2 1 1
For example, row n = 8 counts the following reversed partitions:
(8) (233) (35) (125) (26) (116) (17)
(44) (1223) (134) (11114) (1115)
(2222) (11123) (224)
(11111111) (11222) (1124)
(111122) (1133)
(1111112) (111113)
MATHEMATICA
Table[Length[Select[Reverse/@IntegerPartitions[n], If[Length[#]==1, 0, Max@@Differences[#]]==k&]], {n, 2, 15}, {k, 0, n-2}]
CROSSREFS
Crossrefs found in the link are not repeated here.
Leading terms are A000005.
Row sums are A000041.
This is a trimmed version of A238353, which extends to k = n.
For minimum instead of maximum we have A238354.
Ignoring singletons entirely gives A238710.
A279945 counts partitions by number of distinct differences.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jul 08 2022
STATUS
approved