login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091602
Triangle: T(n,k) is the number of partitions of n such that some part is repeated k times and no part is repeated more than k times.
26
1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 3, 2, 1, 0, 1, 5, 4, 3, 1, 1, 0, 1, 6, 7, 3, 3, 1, 1, 0, 1, 8, 8, 6, 3, 2, 1, 1, 0, 1, 10, 12, 7, 5, 3, 2, 1, 1, 0, 1, 12, 15, 11, 6, 5, 2, 2, 1, 1, 0, 1, 15, 21, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1, 18, 26, 20, 12, 9, 5, 4, 2, 2, 1, 1, 0, 1, 22, 35, 25, 18, 11, 8, 5, 4, 2, 2, 1, 1, 0, 1
OFFSET
1,4
COMMENTS
From Gary W. Adamson, Mar 13 2010: (Start)
The triangle by rows = finite differences starting from the top, of an array in which row 1 = p(x)/p(x^2), row 2 = p(x)/p(x^3), ... row k = p(x)/p(x^k); such that p(x) = polcoeff A000041: (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...)
Note that p(x)/p(x^2) = polcoeff A000009: (1 + x + x^2 + 2x^3 + 2x^4 + ...).
Refer to the example. (End)
LINKS
FORMULA
G.f.: G = G(t,x) = sum(k>=1, t^k*(prod(j>=1, (1-x^((k+1)*j))/(1-x^j) ) -prod(j>=1, (1-x^(k*j))/(1-x^j) ) ) ). - Emeric Deutsch, Mar 30 2006
Sum_{k=1..n} k * T(n,k) = A264397(n). - Alois P. Heinz, Nov 20 2015
EXAMPLE
Triangle starts:
1: 1;
2: 1, 1;
3: 2, 0, 1;
4: 2, 2, 0, 1;
5: 3, 2, 1, 0, 1;
6: 4, 3, 2, 1, 0, 1;
7: 5, 4, 3, 1, 1, 0, 1;
8: 6, 7, 3, 3, 1, 1, 0, 1;
9: 8, 8, 6, 3, 2, 1, 1, 0, 1;
10: 10, 12, 7, 5, 3, 2, 1, 1, 0, 1;
11: 12, 15, 11, 6, 5, 2, 2, 1, 1, 0, 1;
12: 15, 21, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
13: 18, 26, 20, 12, 9, 5, 4, 2, 2, 1, 1, 0, 1;
14: 22, 35, 25, 18, 11, 8, 5, 4, 2, 2, 1, 1, 0, 1;
...
In the partition 5+2+2+2+1+1, 2 is repeated 3 times, no part is repeated more than 3 times.
From Gary W. Adamson, Mar 13 2010: (Start)
First few rows of the array =
...
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ... = p(x)/p(x^2) = A000009
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, ... = p(x)/p(x^3)
1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, ... = p(x)/p(x^4)
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 34, ... = p(x)/p(x^5)
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, ... = p(x)/p(x^6)
...
Finally, taking finite differences from the top and deleting the first "1", we obtain triangle A091602 with row sums = A000041 starting with offset 1:
1;
1, 1;
2, 0, 1;
2, 2, 0, 1;
3, 2, 1, 0, 1;
4, 3, 2, 1, 0, 1;
...
(End)
MAPLE
g:=sum(t^k*(product((1-x^((k+1)*j))/(1-x^j), j=1..50)-product((1-x^(k*j))/(1-x^j), j=1..50)), k=1..50): gser:=simplify(series(g, x=0, 20)): for n from 1 to 13 do P[n]:=coeff(gser, x^n) od: for n from 1 to 13 do seq(coeff(P[n], t^j), j=1..n) od;
# yields sequence in triangular form - Emeric Deutsch, Mar 30 2006
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+1, min(k,
iquo(n-i*j, i+1))), j=0..min(n/i, k))))
end:
T:= (n, k)-> b(n, 1, k) -`if`(k=0, 0, b(n, 1, k-1)):
seq(seq(T(n, k), k=1..n), n=1..20);
# Alois P. Heinz, Nov 27 2013
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i>n, 0, Sum[b[n-i*j, i+1, Min[k, Quotient[n-i*j, i+1]]], {j, 0, Min[n/i, k]}]]]; t[n_, k_] := b[n, 1, k] - If[k == 0, 0, b[n, 1, k-1]]; Table[t[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz's second Maple program *)
CROSSREFS
Row sums: A000041. Inverse: A091603. Square: A091604.
Columns 1-6: A000009, A091605-A091609. Convergent of columns: A002865.
Cf. A000009. - Gary W. Adamson, Mar 13 2010
T(2n,n) gives: A232697.
Sequence in context: A128187 A266477 A133121 * A336695 A035465 A096144
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jan 23 2004
STATUS
approved