login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051135
a(n) = number of times n appears in the Hofstadter-Conway $10000 sequence A004001.
15
2, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3
OFFSET
1,1
COMMENTS
If the initial 2 is changed to a 1, the resulting sequence (A265332) has the property that if all 1's are deleted, the remaining terms are the sequence incremented. - Franklin T. Adams-Watters, Oct 05 2006
a(A088359(n)) = 1 and a(A087686(n)) > 1; first differences of A188163. - Reinhard Zumkeller, Jun 03 2011
From Robert G. Wilson v, Jun 07 2011: (Start)
a(k)=1 for k = 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 20, 22, 23, 25, 28, ..., ; (A088359)
a(k)=2 for k = 1, 2, 7, 12, 14, 21, 24, 26, 29, 38, 42, 45, 47, 51, 53, ..., ; (1 followed by A266109)
a(k)=3 for k = 4, 15, 27, 30, 48, 54, 57, 61, 86, 96, 102, 105, 112, ..., ; (A267103)
a(k)=4 for k = 8, 31, 58, 62, 106, 116, 120, 125, 192, 212, 222, 226, ..., ;
a(k)=5 for k = 16, 63, 121, 126, 227, 242, 247, 253, 419, 454, 469, ..., ;
a(k)=6 for k = 32, 127, 248, 254, 475, 496, 502, 509, 894, 950, 971, ..., ;
a(k)=7 for k = 64, 255, 503, 510, 978, 1006, 1013, 1021, 1872, 1956, ..., ;
a(k)=8 for k = 128, 511, 1014, 1022, 1992, 2028, 2036, 2045, 3864, ..., ;
a(k)=9 for k = 256, 1023, 2037, 2046, 4029, 4074, 4083, 4093, 7893, ..., ;
a(k)=10 for k = 512, 2047, 4084, 4094, 8113, 8168, 8178, 8189, ..., . (End)
Compare above to array A265903. - Antti Karttunen, Jan 18 2016
LINKS
T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
Eric Weisstein's World of Mathematics, Hofstadter-Conway $10,000 Sequence.
FORMULA
From Antti Karttunen, Jan 18 2016: (Start)
a(n) = A188163(n+1) - A188163(n). [after Reinhard Zumkeller's Jun 03 2011 comment above]
Other identities:
a(n) = 1 if and only if A093879(n-1) = 1. [See A188163 for a reason.]
(End)
MAPLE
a[1]:=1: a[2]:=1: for n from 3 to 300 do a[n]:=a[a[n-1]]+a[n-a[n-1]] od: A:=[seq(a[n], n=1..300)]:for j from 1 to A[nops(A)-1] do c[j]:=0: for n from 1 to 300 do if A[n]=j then c[j]:=c[j]+1 else fi od: od: seq(c[j], j=1..A[nops(A)-1]); # Emeric Deutsch, Jun 06 2006
MATHEMATICA
a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Array[a, 250]; Take[ Transpose[ Tally[t]][[2]], 105] (* Robert G. Wilson v, Jun 07 2011 *)
PROG
(Haskell)
import Data.List (group)
a051135 n = a051135_list !! (n-1)
a051135_list = map length $ group a004001_list
-- Reinhard Zumkeller, Jun 03 2011
(Scheme) (define (A051135 n) (- (A188163 (+ 1 n)) (A188163 n))) ;; Antti Karttunen, Jan 18 2016
(Magma)
nmax:=200;
h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n - Self(n-1)): n in [1..5*nmax]]; // h = A004001
A188163:= function(n)
for j in [1..3*nmax+1] do
if h[j] eq n then return j; end if;
end for;
end function;
A051135:= func< n | A188163(n+1) - A188163(n) >;
[A051135(n): n in [1..nmax]]; // G. C. Greubel, May 20 2024
(SageMath)
@CachedFunction
def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) # h=A004001
def A188163(n):
for j in range(1, 2*n+1):
if h(j)==n: return j
def A051135(n): return A188163(n+1) - A188163(n)
[A051135(n) for n in range(1, 201)] # G. C. Greubel, May 20 2024
CROSSREFS
Cf. A088359 (positions of ones).
Cf. A265332 (essentially the same sequence, but with a(1) = 1 instead of 2).
Sequence in context: A355522 A268190 A241150 * A325541 A260258 A283196
KEYWORD
easy,nonn,nice
AUTHOR
Robert Lozyniak (11(AT)onna.com)
EXTENSIONS
More terms from Jud McCranie
Added links (in parentheses) to recently submitted related sequences - Antti Karttunen, Jan 18 2016
STATUS
approved