login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of times n appears in the Hofstadter-Conway $10000 sequence A004001.
15

%I #51 May 21 2024 05:33:11

%S 2,2,1,3,1,1,2,4,1,1,1,2,1,2,3,5,1,1,1,1,2,1,1,2,1,2,3,1,2,3,4,6,1,1,

%T 1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,7,1,1,1,1,

%U 1,1,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3

%N a(n) = number of times n appears in the Hofstadter-Conway $10000 sequence A004001.

%C If the initial 2 is changed to a 1, the resulting sequence (A265332) has the property that if all 1's are deleted, the remaining terms are the sequence incremented. - _Franklin T. Adams-Watters_, Oct 05 2006

%C a(A088359(n)) = 1 and a(A087686(n)) > 1; first differences of A188163. - _Reinhard Zumkeller_, Jun 03 2011

%C From _Robert G. Wilson v_, Jun 07 2011: (Start)

%C a(k)=1 for k = 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 20, 22, 23, 25, 28, ..., ; (A088359)

%C a(k)=2 for k = 1, 2, 7, 12, 14, 21, 24, 26, 29, 38, 42, 45, 47, 51, 53, ..., ; (1 followed by A266109)

%C a(k)=3 for k = 4, 15, 27, 30, 48, 54, 57, 61, 86, 96, 102, 105, 112, ..., ; (A267103)

%C a(k)=4 for k = 8, 31, 58, 62, 106, 116, 120, 125, 192, 212, 222, 226, ..., ;

%C a(k)=5 for k = 16, 63, 121, 126, 227, 242, 247, 253, 419, 454, 469, ..., ;

%C a(k)=6 for k = 32, 127, 248, 254, 475, 496, 502, 509, 894, 950, 971, ..., ;

%C a(k)=7 for k = 64, 255, 503, 510, 978, 1006, 1013, 1021, 1872, 1956, ..., ;

%C a(k)=8 for k = 128, 511, 1014, 1022, 1992, 2028, 2036, 2045, 3864, ..., ;

%C a(k)=9 for k = 256, 1023, 2037, 2046, 4029, 4074, 4083, 4093, 7893, ..., ;

%C a(k)=10 for k = 512, 2047, 4084, 4094, 8113, 8168, 8178, 8189, ..., . (End)

%C Compare above to array A265903. - _Antti Karttunen_, Jan 18 2016

%H Reinhard Zumkeller, <a href="/A051135/b051135.txt">Table of n, a(n) for n = 1..10000</a>

%H T. Kubo and R. Vakil, <a href="http://dx.doi.org/10.1016/0012-365X(94)00303-Z">On Conway's recursive sequence</a>, Discr. Math. 152 (1996), 225-252.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Hofstadter-Conway10000-DollarSequence.html">Hofstadter-Conway $10,000 Sequence.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hofstadter_sequence">Hofstadter sequence</a>

%H <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>

%F From _Antti Karttunen_, Jan 18 2016: (Start)

%F a(n) = A188163(n+1) - A188163(n). [after _Reinhard Zumkeller_'s Jun 03 2011 comment above]

%F Other identities:

%F a(n) = 1 if and only if A093879(n-1) = 1. [See A188163 for a reason.]

%F (End)

%p a[1]:=1: a[2]:=1: for n from 3 to 300 do a[n]:=a[a[n-1]]+a[n-a[n-1]] od: A:=[seq(a[n],n=1..300)]:for j from 1 to A[nops(A)-1] do c[j]:=0: for n from 1 to 300 do if A[n]=j then c[j]:=c[j]+1 else fi od: od: seq(c[j],j=1..A[nops(A)-1]); # _Emeric Deutsch_, Jun 06 2006

%t a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Array[a, 250]; Take[ Transpose[ Tally[t]][[2]], 105] (* _Robert G. Wilson v_, Jun 07 2011 *)

%o (Haskell)

%o import Data.List (group)

%o a051135 n = a051135_list !! (n-1)

%o a051135_list = map length $ group a004001_list

%o -- _Reinhard Zumkeller_, Jun 03 2011

%o (Scheme) (define (A051135 n) (- (A188163 (+ 1 n)) (A188163 n))) ;; _Antti Karttunen_, Jan 18 2016

%o (Magma)

%o nmax:=200;

%o h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n - Self(n-1)): n in [1..5*nmax]]; // h = A004001

%o A188163:= function(n)

%o for j in [1..3*nmax+1] do

%o if h[j] eq n then return j; end if;

%o end for;

%o end function;

%o A051135:= func< n | A188163(n+1) - A188163(n) >;

%o [A051135(n): n in [1..nmax]]; // _G. C. Greubel_, May 20 2024

%o (SageMath)

%o @CachedFunction

%o def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) # h=A004001

%o def A188163(n):

%o for j in range(1,2*n+1):

%o if h(j)==n: return j

%o def A051135(n): return A188163(n+1) - A188163(n)

%o [A051135(n) for n in range(1,201)] # _G. C. Greubel_, May 20 2024

%Y Cf. A004001, A087686, A093879, A188163, A266109, A267103 and array A265903.

%Y Cf. A088359 (positions of ones).

%Y Cf. A265332 (essentially the same sequence, but with a(1) = 1 instead of 2).

%K easy,nonn,nice

%O 1,1

%A Robert Lozyniak (11(AT)onna.com)

%E More terms from _Jud McCranie_

%E Added links (in parentheses) to recently submitted related sequences - _Antti Karttunen_, Jan 18 2016