

A241150


Irregular triangle read by rows T(n,k) = number of partitions of degree k in the partition graph G(n), for n >= 2; G(n) is defined in Comments.


6



2, 2, 1, 3, 1, 1, 2, 3, 2, 4, 2, 4, 1, 2, 6, 5, 1, 1, 4, 5, 8, 3, 2, 3, 8, 10, 4, 5, 4, 10, 13, 5, 9, 1, 2, 13, 17, 8, 14, 1, 1, 6, 12, 22, 10, 22, 3, 2, 2, 19, 27, 11, 32, 5, 5, 4, 21, 33, 15, 43, 9, 10, 4, 20, 44, 21, 57, 10, 19, 1, 5, 28, 50, 20, 77, 20
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The partition graph G(n) of n has the partitions of n as nodes, and nodes p and q have an edge if one of them can be obtained from the other by a substitution x > x1,1 for some part x. G(n) is nonplanar for n >= 8. Column 1: divisors of n, A000005(n), for n >= 2. A000041(n) = sum of numbers in row n, for n >= 2 (counting the top row as row 2). Number of numbers in row n (i.e., maximal degree in G(n)): A241151(n), n >= 2. Last term in row n (the number of partitions having maximal degree): A241153(n), n >= 2. Maximal number in row n: A241152(n), n >= 2. Let u(n,k) be the array at A029205 (where n >= 0, k=0..n). Then u(n,k) is the number of edges in G(n+2) between partitions of n+2 that having length k+1 and those having length k+2.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..500


EXAMPLE

The first 12 rows:
2
2 ... 1
3 ... 1 ... 1
2 ... 3 ... 2
4 ... 2 ... 4 ... 1
2 ... 6 ... 5 ... 1 ... 1
4 ... 5 ... 8 ... 3 ... 2
3 ... 8 ... 10 .. 4 ... 5
4 ... 10 .. 13 .. 5 ... 9 ... 1
2 ... 13 .. 17 .. 8 ... 14 .. 1 ... 1
6 ... 12 .. 22 .. 10 .. 22 .. 3 ... 2
2 ... 19 .. 27 .. 11 .. 32 .. 5 ... 5
The graph can is represented by these transformations:
6 > 51, 51 > 411, 42 > 321, 42 > 411, 411 > 3111, 33 > 321, 321 > 2211, 321 > 3111, 3111 > 21111, 222 > 2211, 2211 > 21111, 21111 > 111111. These 4 partitions p have degree 1 (i.e., number of arrows to or from p): 6, 33, 222, 111111; these 2 have degree 2: 51, 42; these 4 have degree 3: 411, 3111, 2211, 21111; the remaining partition, 321, has degree 4. So, row 6 of the array is 4 2 4 1.


MATHEMATICA

z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {#  1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] > # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
Column[m] (* A241150 as an array *)
Flatten[m] (* A241150 as a sequence *)
Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
(* Next, show the graph G(k) *)
k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] > FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels > "Name", ImageSize > 500, ImagePadding > 20] (* Peter J. C. Moses, Apr 15 2014 *)


CROSSREFS

Cf. A241151, A241152, A241153, A029205, A000041.
Sequence in context: A236468 A116685 A268190 * A051135 A325541 A260258
Adjacent sequences: A241147 A241148 A241149 * A241151 A241152 A241153


KEYWORD

nonn,easy,tabf


AUTHOR

Clark Kimberling and Peter J. C. Moses, Apr 17 2014


STATUS

approved



