OFFSET
2,1
EXAMPLE
a(7) counts these 6 partitions: 61, 52, 43, 331, 322, 2221, which all have degree 2 in G(7), as seen by putting k = 7 in the Mathematica program.
MATHEMATICA
z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
Column[m] (* A241150 as an array *)
Flatten[m] (* A241150 as a sequence *)
Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
(* Next, show the graph G(k) *)
k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling and Peter J. C. Moses, Apr 17 2014
STATUS
approved