login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241152
Maximal number of partitions having the same degree in the partition graph G(n) defined at A241150.
4
2, 2, 3, 3, 4, 6, 8, 10, 13, 17, 22, 32, 43, 57, 77, 94, 119, 144, 178, 209, 274, 364, 465, 597, 746, 935, 1143, 1389, 1674, 2006, 2376, 2803, 3284, 3905, 4853, 6010, 7360, 8988, 10834, 13070, 15565, 18522, 21836, 25713, 30030, 35048, 40575, 46930, 53950
OFFSET
2,1
EXAMPLE
a(7) counts these 6 partitions: 61, 52, 43, 331, 322, 2221, which all have degree 2 in G(7), as seen by putting k = 7 in the Mathematica program.
MATHEMATICA
z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
Column[m] (* A241150 as an array *)
Flatten[m] (* A241150 as a sequence *)
Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
(* Next, show the graph G(k) *)
k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved