login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355129
a(n) is the number of integer sequences b(0..n) of length n+1, with 0 <= b(k) <= k! and monotonic b(k) <= b(k+1).
0
2, 3, 7, 40, 856, 91821, 60080136, 279276911843, 10503211888973754, 3585680755683196123365, 12323227994417456429490342865, 468378989392773003347310901356953089, 214565221409985003242070442557341938941878313, 1282499669290042152350268651085002913530161723080398635
OFFSET
0,1
COMMENTS
List of the possible cases regarding the patterns of the numbers in the sequence b:
Length: 1 2 3 4 5 6
Pos 0: 1 1 1 1 1 1
Pos 1: 1 2 3 4 5 6
Pos 2: 0 0 3 7 12 18
Pos 3: 0 0 0 7 19 37
Pos 4: 0 0 0 7 26 63
Pos 5: 0 0 0 7 33 96
Pos 6: 0 0 0 7 40 136
Pos 7: 0 0 0 0 40 176
Pos 8: 0 0 0 0 40 216
... ... ... ... ... ... ...
Sum: 2 3 7 40 856 91821
Each row counts the number of possible distributions of numbers, row "Pos 0" is the number of possible distributions with only the number zero. The row "Pos 1" counts the distributions of zeros and ones. The row "Pos 2" the possible distributions of {0,1,2} and so forth.
From top to down: If a number in the column length = k has reached the value of the sum of the column length = k-1, this number will be k!-(k-1)!+1 times repeated. Before this limit is reached each number is the sum of the neighbor one step above and the neighbor one step to the left.
FORMULA
a(n) = binomial((n-1)! + n-1, n-1) + binomial((n-1)! + n-2, n-1) + Sum_{r = 1..n-2} Sum_{k = 0..r-1} binomial((n-1)! - r! - k+n - 2, n-1)*binomial(r-1,k)*a(r)*(-1)^(k+1).
EXAMPLE
For a(0) we get two possible sequences:
{0}, {1}.
For a(1) we get three possible sequences:
{0, 0}, {0, 1}, {1, 1}.
For a(2) = 7 we get:
{0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {0, 1, 1},
{0, 1, 2}, {1, 1, 1}, {1, 1, 2}.
PROG
(PARI)
a(n) = binomial((n-1)! + n-1, n-1) + binomial((n-1)! + n-2, n-1) + sum(r = 1, n-2, sum(k = 0, r-1 , binomial((n-1)! - r! - k+n - 2, n-1)*binomial(r-1, k)*a(r)*(-1)^(k+1)))
CROSSREFS
Cf. A000108 (if we change the definition into 0 <= b(k) <= k).
Sequence in context: A182219 A227777 A037843 * A102604 A119662 A265776
KEYWORD
nonn
AUTHOR
Thomas Scheuerle, Aug 04 2022
STATUS
approved