login
A355132
E.g.f. A(x) satisfies A(x) = 1 + 2 * (1 - exp(-x)) * A(2 * (1 - exp(-x))).
2
1, 2, 14, 290, 16654, 2487202, 916292622, 801308046114, 1618342215277838, 7398618880762147490, 75427503900622910066190, 1695072499481604881387820578, 83204183269315611109025907220238, 8854418165429899481934158557358648738
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(-log(1-x)) = 1 + 2*x*A(2*x).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(n-k) * k * 2^k * Stirling2(n,k) * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(i-j)*j*2^j*stirling(i, j, 2)*v[j])); v;
CROSSREFS
Sequence in context: A217474 A132695 A015015 * A355133 A128087 A365355
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2022
STATUS
approved